T T R T e e R 1

I ettt R R R ESRE S SRS R B EE RS R RN RN N TR R T IO U P e
o i A TN RN L3 119 TETLI AP LI I EIS RNt
9 2322224400422 E22 0 428 P 4E 4 FAE FTARIEELEAPET N ES PSS
2 2218282244249 200484 S09 4+ S48 2 2P PVILILEL ALV 000"
IR IR R E R R E R R .t IEEE L TR ERE R RO - -
P 4PN L N LA TLPPEIL 1200 TREEE PR EITSNITANE NI ALV Y
AL 39820t E FAEAE 4T G AP 2T AP L LI LIS
22414492+ 290 09 gl et 2% e tetsr et 1 v et ette
T EETET P22+ 4 2227292222222 28400222 22200 0ttt QeT R
g))))>>>>>>>>>>>>>)>)b)>>>>>>>>>>>>>>>>>>>>>>>>>>>:>)))

> > >2> g}b > 22> 2> >2> >2> 23 2>2>>
233> 353 33333 233 3,333 ‘> >33 35> H>> g)) > 223 > >3>>>>
22> 2> >3>3> 22333 >>3> > > I>> 23> 222> 33> > >3D>D
23> 5>> >> >>553> > 75 355 553 353355 553 5 35535
22> 22> 23331 22223 333> 3> D> 22> 533 2>2323> > 2222>>
3> 33> 53333 55575 525 > 33> 3»> 35> 35375 3> & 533355
>33 >35> >> 2> >>> > >>> >3 22> >> >35> > >
PP I2DOD 3202 IFSDIIDODIIODIF>IIDIIISDSOIIISDS
SR I ReRCAP FERSRERCe R S U RRACARSBURRE SRR CE S SR RARENELARERTY
SRy NTrRFSNETRLL STE Bu n= = = EECcEzcossnesax
ETasmEE¥REENS BEAS W NEN SER FAM3 AEANN AR UNwmEERESETEaABAS
METF P B ESERATLAD dx & X% DU EAXF RISES FLETRreITTEEzenom
StasrEsEEENSE & = 3 RFL EEE WA s=m BasazsENZsuzuas
BEESCUTESEBEY B 8 PATf OES SWE NSUSEAENNY SERSETESNUEEVE
SfscxaxaSFEPRY SEES % SFE SSE ExX3 NESRE SN8 CREyENEEISRENRCE
SEgusAmEIEETeR mew == msaw mew sm SEnsnssavIsEssma
M e T L e T T i LT

geP e R e C N S R o O A B IR 1t & e it B F s i
0. 0 N AGEE LN TS
Dotty .ED. A Plague of Irritating ED's, Count Rowel!'s Creation . 2, 45, 79

Lynn Wilkins & Paul

Tapani Tarvainen
Tapani Tarvainen

Lind

M-Code, Hardware and Software, Bibliography, EfC. v « o o « & 3
M-Code Bibliography, Commercial Hardware and Software . « » o 5
User Code Assembler and Disassembler ., . v 4 v o o o o » o« « 8
Numeric Prompt Lengthener Modifies 41c Operating System . . 20

Tapani Tarvainen & Kari Pasanen

Tapani Tarvainen
Peter van Sweiten &

Paul Cooper
Grateful .ED.
Neil Hunter-Blair

Tom Cadwal lader
Tom Cadwal lader
Peter Rossiter
John McGechie
Beb Laughton
Robert Laughton
PPC Melbourne
Jean-Daniel Dodin
Gordon Rowel |
Paul Cooper
W/wWPS LED.
Chris Rath

Paul Cooper
Gordon Rowel |
Philip Long

Microcode and Macrocode User SER Stack Management Functions .
A Better Finnish for the Assembler/Disassembier « « &
.ED.

Deft Delft Dutch Devotees Rape & Revise Reader . . o o o « »
O Ay o Dy A L e
Ron Eades Retires Resplondent o o o vivis 4 s iu e nle st s
M-Code Play: X-Memory RouTines, SAVSTA, RESSTA, SWAPA, SWAPS,
XSM, XMS, XAM, XMA, XEZREG, LRET, SRET, RNDM, XRNDM, and
Others: GOEND, ROM>U2, "U2", R64; 4 M-Code Subroutines: EFM,
ASS 3, PPC 5, XQXROM, and QOthers: POPX, CHKSUM, $X, ATOXR,
XTOAL, CLALMS, SKEYS, RKEYS, X>CR, CUR*, and Hand Knitted ROM

v

BBY

JORparST Beat T U TR G B S R e el e aa a w w51
HP-41c Bugs Revisited By Intrepid Entomologist . & o o o « o 37
"Inside the Cassette Tape" Revisited by Magnetic Spy « . . . 38
Microcode Maxicatalogue CAT 4 & 4 o o o o o o s o 4 o o o o o 4
AsMacrosMeCodeBlbliography iy L85 Te. 0. SR En, H0E T e e e, 46
Fast Q-Loading of Bytes Using X-Functions « o« o o o o » o » & 55
HP=-41¢/cV Growth and Care of EVergreens « v v o o v s o s o o 56
CAE Programming Courses March on to Infinity, 57
X=CAT = A Port Addressable Catalogue Microcode Function . . . 58
HASN - Programmable Key Assignment Program Fit For Any Thmg 9

o
N

KASN = Non-Programmable Prompting Key Assignment Disturbs Q .
Print Wheels Suffer From Standardisation Gerrymander. 66
M-Code Programming - Notes by Michael Thompson and ED, . . . 67
Super Morse Code - An Intermediate Code Demonstration Routine 73
Frankenstein's Monster Lurches Into Light Beeping NMN's . . . 76
Bui ld-A-Monster Assembler Kit Instructions . . « v o o o . . 78

REGISTERED BY

VBG4080 (CATEGORY B)

PPC TECHNICAL NOTES #15

M-CODE PROGRAMMING Chris Rath (6287)

This article is stolen, with Chris' blessing, from the Proceedings of the Fhode
Island New England PPC Conference, held on May 7th. and 8th. 1983. The novel nature
of the new information given here will be apparent to anyone knowing anything of
recent work in microcode. (This is the REAL name, in Malmacronian, of that which
Chris perversely refers to as m-code.) Please notice that this material has been
lightly .ED.ited by .ED. in consultation with Michael Thompson, who spent several
hours at .ED.'s home, caressing the keys of .ED.'s Osborne to get this stuff into
it, Had it not been necessary to so rekey - since the photocopy Chris sent to us had
the effects of his using an emphasis pen noticed by the copier he used for us -
neither of the criminals just mentioned would have tampered at all. But word
processing is the standard invitation to such unsolicited sin. Beware, then. Send us
stuff so beautifully typed, or printed, in exactly the format we can use, and
nothing will happen to it apart from its appearing in print. (.ED. is very likely to
respell 'EXISTANT's as 'EXISTENT's, and such things.) The moral is obvious: send
important stuff, scrawled, or otherwise needing this kind of work, and .ED. will be
his normal evil .ED. (He does it to his own stuff. Word processors are supposed to
cut down on writing and revising time. In Malmacronia they seem not to do so.)
Anyway: may the Chris forgive us . .. Yr. Obt. Pedagogue-ing .ED., who has
collected at the .END. all of the longer comments which would otherwise interrupt
the text at the end. The notes are noted in the text by <1», <2>, etc.

MCMCMCMCMCNCICMCMCMCNCMCMCMCICMCME

1(a) What is m~code?

The 41 is usually programmed in what I will define here as 'user-code'. This is
the language of the familiar STO's, ENTER's, etc. These commands represent
keystrokes, and we place sequences of these in memory as the programs we write.
These programs perform specific tasks, and sets of related programs are frequently
used, and grouped together. (E.g. the Complex Arithmetic programs in the PPC ROM.)

In actuality our familiar user-code is itself just a very large set of
programs, and the language that they are written in is m-code. I.e. when we press a
key, we are just indicating to the 41 which m-code program we wish to run.

Because m-code is a step down from user-code (down at the level of the 41
itself), we can do much more with m-code. But also inherent in the step down 15 the
fact that every task must be carried out in smaller steps than we are used to 1in
user-code. For example, STO @1: in m-code we must place the contents of the X-
register in an internal working register, then select what is presently Register g1
(found by locking at the address of REF in status register c), and then finally put
the data in register @1. But don't think that smaller steps always cause a
complication of our task - some programming problems are simplified by the low lev:l
of m-code. Amongst the best known of these are the problems set by, for examp e,
CODE and DECODE.

1{b) The m-code programmer's attitude.

One must be in a rather different frame of mind when programming in m=code, a
frame of mind different from that .ppropriate to non-synthetic user-code
programming. This 'new' outlock is very similar to that which serious synthetic
programmers must have: one involving a respect for the integrity of the 41 operating
system. We may not like the 'user-code' illusion that exists, but when we write an
m-code program, we are writing a tool for use in that user-code dimension, and that
being so, we are obliged to help maintain that illusion. <1>

hs most of us are painfully aware, the operating system works to preserve this
illusion at almost any costs: the normalization of registers, the cold start
constant, etc. I am not suggesting that everyone who intends to program in m-code
must examine and memorize the 41 and its peripherals and programs, only that when
your m-code makes a change to something, you should be sure that the 41 operating
system can cope properly with the change.

If you destroy the user-code program counter, then be sure to invalidate the
line counter, and reset the user program counter to something which the operating
system can accept, such as the address of the .BND.

Digit shifts and rotations are provided, but not bit manipulations, hence:

Left shift one bit C=C+C
Right shift one bit C=C+C and FCR used in appropriate combinations
Hotate left one bit C=C+C

INC +02

C=C+1

FRotate right bits use rotate left and RCR

67

68

PPC TECHNICAL NOTES K15

The above can be effected in more ways than are shown here, but those above use
only tne C register.

If you write a non-programmable routine, you have status registers a and b to
use for scratch. In the light of 1(b) above, you should either attempt to save the
user program counter from b, or invalidate the line number, resetting the program
counter to something recognizable.

If you run short of scratch registers, and the status register (of the CPU) is
full of valuable data, but you still must test the state of a bit, then place the
bit in the C register, rotate it to either XS, or MS fields, and then use C=C+C XS,
or MS an arbitrary number of times to shift the desired bit into the carry flag.
Then you may make a conditional branch, and allow the state of the bit to affect
your program.

Does the result of a subroutine have to be noted by the calling program? Then
don't forget that in m-code the return address can easily be altered. I.e. if our
subroutine is to have a true/false result, then if true we will execute

POP ADR
C=C+1 M
PUSH ADR

when the return is encountered, the program must take the form:
NC XQ 'Subroutine'
JIC to an 'if false routine'

. €= continue here if true

This idea of incremented return addresses can easily be extended to simulate a
conputed GOTO.

Any who are programming in m-code, and have a 143A printer and the IL module,
should keep in mind that when the IL module printer ROM is disabled it has just
changed addresses: it has moved from page 6 in memory to page 4 (where the
diagnostic ROM usually resides). Take care, then, if you are experimenting with page
4, and have the IL module in place.

2(b) Task size.

Of the many problems we try to solve on our 41's, there are really two types:
those which can easily be broken down into a few small repetitive pieces, and those
which can only be broken down into large pieces, comparable to user-code
instructions. I will take the time here to define two terms describing these types:

i) Low level tasks: Those readily broken down into small sub-tasks. Though
these component tasks are not always repetitive, the pieces are generally
smaller than those behind user-code instructions.

ii) High level tasks: Those which may only be divided into large sub-tasks -
of the size carried ocut by user-code instructions, or sequences of such
instructions.

As should be readily evident now, low level tasks are those which are best, and
most easily programmed in m-code, rather than in user-code.

CODE and DECODE provide familiar examples of low level tasks. In CODE we are
changing ASCII bytes into hex nybbles, and in DECODE we are changing hex nybbles
into ASCII bytes. As we are all aware, there are no user-code instructions for
dealing with 'nalves' of characters easily. It can be done, but only with finagling
and coaxing, and usually only in the flag register. Its task is also very
repetitive: nybble to byte over and over, or the converse. It is a task which is
ideally suited for m-code.

An example of a routine one might like to see in m-code, but shouldn't, is a
quadratic root solver. wWhy not? Because it is a high level problem. The optimized
user-code version, which most are familiar with, is only 35 bytes (with a two
character label and end). But an m-code version (which I was foolish enough to
write) is over 80 bytes, and there is no significant increase in execution time.
Why? Because the m-code routine calls the same math subroutines as the user-code
version, together with a few extra routines to put things in and out of scratch.
With this type of routine it would be advantageous to place it in an EPROM, but in
user-code, since this provides an inlwerent speed increase.

A major task can often be broken down into smaller parts, some of which are low
level tasks. This is the real place of m-code in our use of the 41. When we use it

PPC TECHNICAL NOTES K15

here, it makes our programs run faster, and allows the code to flow more easily when
writing the program.

1 realise that this doesn't give hard and fast rules for determining the
suitability of a problem to m-code solution, but at present no rules exist. However,
if you make the low level/high level concept an extension of your program design,
you should have no difficulty with the decision.

3 peripheral controls.

'Smart' peripherals are those devices to which the 41 can pass control, using
the SELP r instruction. When SELP r is executed, the 41 CPU stops executing
instructions, and the peripheral begins executing them. This continues until an
opcode is encountered that has bit @ set. Control is then passed back to the 41 CPU
after execution of the instruction by the peripheral.

The main source of information on the 41c m-code instruction set has been Steve
Jacobs' article in PPC Technical Notes #9, but there are errors in his account of
the peripheral instructions (see pp.84-5) which I would like to note here. SKIP is
listed as having a type 'f' parameter, but its parameter is in fact of type 'r'.
[See the parameter definitions at the foot of p.B4. .ED] The importance of this
becomes evident when we start defining the peripheral, IL module m-code instruction
set. <2»

Peripheral instructions of the SELP type:
1) SELP r Select and pass control to peripheral ‘r'.
r ranges in value from 0 to 15 (F). Bit structure: 22?7 1§g1 #¢
This is a normal class § instruction. It passes control to the peripheral
numbered 'r'. [See Jacobs' TABLE #.]

2) ?PPSET r .Is peripheral Flag r Set?
r ranges in value from @ to 15 (F). Bit structure: ???? Fggg N
A peripheral may have up to 16 flags. If flagr is setr, then the 41 CPU
carry flag is set, as with any compare or test instruction. Note: this
instruction immediately returns control to the 41c CPU.

3) FLDI $ab Peripheral Load Immediate.
ab may range in value from hex @f to FF. Bit structure: aaaa bbbb @x
This instruction sends the byte of data (ab, in hex digits = bits: aaaabbbb)
to the selected peripheral. If bit @ (bit X) of the instruction code is ser,
control is immediately returned to the 41c CPU.

4) C=PREG r Load exponent of C from the peripheral register or data line r.
r ranges in valve from @ to 15 (F). Bit structure: ???? 111¢ 1X
The contents of the register, or dataline r of the selected peripheral are
placed in digits § and 1 of the C register in the 41 CPU. If bit @ of the
instruction (bit X) is set, control is passed back to the 41c CPU.

Since the IL module is such a smart peripheral, we we will set out defining an
instruction set for specific use with that peripheral. Control of the module, and
hence of the IL, is effected through use of the SELP type of instruction, togethar
with another of the class @ instructions.

Instructions for use with the IL module:

A) WREG r Write register C exponent digits to peripheral register r.
r ranges from @ to 7. Bit structure: 17?7 d@gg gg.
This is a quite normal, class ¢, type § instruction. (The only cther
[used?] type @ is the NOP, @#¢.) <3> It writes the contents of the 41 CPU
register C (digits # and 1) to register 'r'. tote that this is not part of
the SELP set as defined above. <4>

B) RREG r Read register r of peripheral r' to exponent of C.

r (x') ranges from # to 7.

This, as you will see, is made up of three SELP type instructions. A formal

definition is being given, in order to assist in IL module applications, and

also because of an idiosyncracy. RREG r is to be understood as the sequence:
({ SELP r

RREG r = (C=PREG ' <5>

{ ?PFSET r (with bit @ set)

The reason for the ?PPSET instruction is not presently known. It is serving
to pass control back to the 41 CPU, but that could have been done with

€9

70

PPC TECHNICAL NOTES #15

C=PREG r. Paul Lind reports that the flag test never appears to be used as
anything but a NOP. Perhaps the IL module requires the extra instruction
cycle to carry out all of its internal processing?

It should be emphasized here, that after the SELP r instruction has been
issued, any of the SELP type commands may be executed, and indeed if one is to
operate upon an IL register, then SELP r must be given to select that register
[peripheral??] before any other commands are executed.

C) Paul Lind reports that it is advantageous to define a couple of special
cases: IL WRITE & IL READ.

IL WRITE is just writing a message out over the IL.

IL READ 18 the act of reading a message from the IL, or more precisely, the
last received message.

1 am leaving a formal definition of these for Paul, as he is compiling
other IL related m-code material for publication, and I am not familiar
enough with this to be sure of such a definition.

Also used with the IL module is the ?FI £ command. This is the external flag
line test, and it allows the IL module to inform the 41 of IL status, without any
direct contact with it. ?FI 8, ?FI 9 & ?FI A are all used in the IL module, but
just what each indicates I do not so far know. Paul feels that they indicate

1) Frame not returned as sent,
ii) Output register available and,
1ii) Frame received.

One must keep in mind that for these flags to possibly be true [set], the FLGEN
flag (bit @) in IL register #1 must be set, for this flag enables the FI line from
the module to the 41 CPU.

We are just beginning to learn about the IL module, and if we are to learn
more, then others with greater insight than I must examine its code. Those who wish
to program in m-code, using the IL module, will find that it is necessary to
purchase the various manuals that are available (see PPCCJ, V1ON1P34), and the
development module, and a second 41c will prove to be of great assistance when
debugging m~code/IL programs, so Paul informs me. [One to transmit data over the IL,
the other to receive it? .ED.]

4 Assemblers and disassemblers.

I present this here as the result of nine months' work last year. I will work
from the inside of the Assembler/disassembler, to the outside, presenting two
external representations that are really very similar internally.

We require two data files for the routines to work with:
1) containing a table of opcodes
i1) containing a table of mnemonics
The assembler looks through the mnemonic table, and when it finds a mnemonic
matching the one you have entered, it jumps to the corresponding entry in the opcode
table and stores it in ROME (Emulated ROM). The disassembler is just the opposite in
concept, but it is not that easy!

The assembler must know whether or not there is a parameter/field to go with
the command., It must then either ask you for it, or parse from the already entered
string. (T second method is a bit more complicated for the programmer, but much
easier for the eventual user.) The assembler should also know whether or not the
¥2/G0's entered require translation to relocatable form. Furthermore, since
parameters can take several forms, they must all be checked. It all sounds very
easy, but try programming itl!

The disassembler is much trickier. When the disassembler examines a word it
mUsSt know the answers to several questions to properly decode it:
- is this the second word of an XQ/GO, or the data word of a relocatable
type, or the data word for a message or error routine?
= is this the second word of an LDI?
- are we in SELP mode?
- 1s this ASCII or HOM display data?
The answers to all of these affect the way the word is decoded, often with
disastious results when a wrong assumption is mades The «disassembler can
determine most of this information for itself, but only if we start
decoding 5 to 10 words before the point we wish to start disassembling.
(Tnis gives the disassembler a chance to sort itself out.)

PPC TECHNICAL NOTES W15

This internal structure can be utilized with two external systems. The
difference between the two consists in the method of entering data to the assembler.
This can be done in two ways:

i) By reading ASCII data from ALPHA [or numerical data from X, as in
ASSEMBLER 3).

ii) By allowing each of the pair of routines to take over, entering the
commands just as we normally do, by single keystrokes for each
function, i.e. by redefining the keyboard.

At present there are no programs of type ii), but I know of three using type
1). One of these is my own, the other two being by Michael Thompson & Richard
Collett, and by Nelson Crowle. <6>

I realize that I have not presented much information here, but I am only trying
to lay a foundation for anyone who may be attempting to write such a beast.

LB B B B B B B B

Addendum. An important mainframe entry point.

This is added here to present an important entry point uncovered by Michael
Thompson (8496) & Richard Collett (4523) of PPC Melbourne. It is a remarkable piace
of disassembly on their part, and this is only meant to convey its (basic) use
gquickly to all.

Entry Point FES2

If you XD PES2, a few display odds and ends of tasks are performed, after which
the 41c goes into light sleep. [The display and the display chip alone are active,
the display chip busily monitoring the keyboard for a sly push.] This leaves the
return address of your XROM routine on the CPU return stack. The entry point also
sets the partial key sequence flag (which is essential when coming out of sleep) and
the message flag. When the next key is pressed, the 41 notes that the partial key
sequence flag is set, and by way of a RIN, hands control over to your XROM routine.
Note that because the message flag is set, the display must contain sometning on
entry to @ES2 or a crash will result [since the display is left justified. And if
the display is full of spaces, then guess what? .MT.). When control is passed to
your XROM routine, the logical keycode of the key that was pressed is left in
register N (digits 1 & 2). The G register must be cleared before entry, or the
keycode returned will be incorrect.

Now we just need to find out why HP doesn't use this entry point in their uwn
routines. . .

A tribute: I would like to thank Paul Lind and Lynn Wilkins for their guidance in my
m~code work, and the group I will name as PPC Melbourne for their support.

Notes by .MT. and .ED.

<1> See the quite different thoughts on this matter expressed by Kamikaze in THe4,
preprinted in the Journal, PPCCJVION3Pp.11-12. But all is not on Kami's angelic
side. If we are to use those three applications ROM's of the 41c, provided f[ree by
HPwith each one purchased, we still do well to heed Chris' words here. Look out for
HP's corporate conception of what the HP-41c is, while using the buttony black box
in accordance with it, but also think ocutside the same constraints when no numbers
are waiting in the wings to be crunched. The HP-41lc is black box + operating system
defining software. It is not itself with different software which we are at liberty
to define. .ED.

<2> Note that Chris is HERE proposing mnemonics for an existing instruction set
used in the IL module ROM. Standard listings of the instructions of that RCM should
be revised in accordance with Chris' proposals below. Dumb .ED. found what was going
on quite unclear until this particular penny dropped. As there could possibly be
others with the same central nervous system disorder . . . It also seemg to Jum.
that the instructions below, where they seem to be of class 1, 2 or 3, are actually
those following a SELP prefix. We trust these little comments help? 1) below, it
seems to deadhead .ED., should be regarded as the prefix to 2), 3) and 4). The other
way to regard these is as instructions which are executed by their corresponding

71

72

PPC TECHNICAL NOTES K15

codes only when a peripheral has been selected, and while it continues to be
selected. The same seems to be true of instruction A of the IL set below, in
relation to 1), 2) and 3) again.

<3> According to Jacobs' TABLE §, all these are NOP's. This seems to be the
(presumably) solitary exception.

<4> Of the IL device - or of the IL module? Previously labelled 'UNUSED' in the
Jacobs TASLE . .ED.

<5> Since .ED. has added the 'dash' to the r of the second mnemonic, be warned:
normally one would be working on one peripheral at a time in a routine. Whis would
be selected by the value of r in SELP r. Once this has been executed, peripheral r
1s active - now a specific one byte register of peripheral r is to be read to the
exponent of C - which register is now determined by the value of the r parameter in
the second instruction of this sequence, C=PREG r - but the value of this r need not
be the same as that of the first. Thus the r'. Deadhead .ED.

<6> If you are contemplating writing one, then give very careful consideration to
the mnemonics you use., There are already about 10 assemblers around, most of them in
user-code, and all of them use slightly different variats of the Jacobs/De Arras
mnemonics. Please try to keep exactly to the Jacobs mnemonics so that others can
use your assembler with ease. If you are writing a disassembler as well, then try to
make the two consistent with eachother, i.e. what is keyed into the assembler should
be the same as the disassembler displays or prints out. Since there are so many
dis/assemblers around, there is little point in writing yet another, but I suppose
this is against the PPC religionl! NOW Michael Thompson is being .ED.l A jolly
forlorn hope. Look in this issue of ™, and the last. When are PPC'ers going to stop
writing key assignment routines and programs? I spent four months on them, and the
thought of any return is positively nauseous. We will have blers/dis blers
with us for several years, for sure. ¥Yr. Sic .ED.
* & ® ok ko k& R AR kW

(Continued from p.66.))

the fourth wheel | bought, a nice 15 pitch wheel. (Wordstar does nof
support proportional spacing, but the F10-40 does - can be switched fo that
mode, and Spellbinder, in its HP Word 125 incarnation, my first love in
word processing software, does.) There are, apparently, no proportional
spacing Diablo” wheels usable on the ITOH F10-40, known, | think in the
USA as the I TOH Starwriter, and anyway they are probably WFPS, or in some
other awful non-standard character sequence, There is only ONE
proportional spaced Qume wheel available with the normal character
sequence - and | will get it (the distributer has no stock, but | have
located a supplier), but it seems to me, in my ignorance, quite absurd that
this should be so, When a user pays like hell To buy a 'precision' printer, as
these are called (line height adjustable by 1/48th of an inch, horizontal
motion by 1/120th inch), why do they nof want to purchase proportional
spaced wheels? |f there were a demand, there would very likely be a

supply. 5
R Now this ITOH printer (which | would commend to anyone wanting
an excellent printer - my wife prefers it to the Diablo 630, partly because
it is quieter, as well as being about half the price), can be programmed to
accept any printwheel sequence = but there is simply no inducement fo do
so on my parf. The Jinglish I TOH manual is one obstacle, the rotten chore
of calculating the right sequence of bytes for a given wheel is the other,
Anyway, once programmed, resetting the printer clears the programmed
sequence, Does any PPC member know of a way around this? (Yes, | COULD
scrap the |TOH and buy a Qume, which is switch selectable, switching To 2
sacond ROM, The disfrigufers of the | TOH here were utterly unhelipful . . .)
Programming the ITOH would not be much good, unless | print from a disc
file, since the two word processing programs | use reset the printer before
printing. Is there any good word processing CP/M software on the market
that will solve this problem - or a patch fo Wordstar or Spellbinder???
Desolate, disproportionate ,ED.

