T EE LT 2AR L4344 242521 P2 A PPt AN TR PP AL LI LA Y2
T rrEer s adntsrng iy » A 19%2 AT PRPRRALAREYEARS N LS
T L2222 2241242829 24 & 444 B 1t %1142 4428281004000
T+ 1242004400020 049 4+] 4 L4+ @ tr 42800t
Tttt nstatprrrr e + 4 *e S an a3 B SR N B R P R]
44224 2Pty rrte s L N ttetr LA 20 B SR B B BN BN B NE N NE A N RN SR RN
211ttt r et a ety | LT Lo] L] 2 PAPL A0y
T tr 4+t P42t ettt gA4 et Sty y Lo O B SR T B A
1111124404404 42222 2224142224212 2224 AR PRTLIQPLELEEERETTRE Y
et R T A B e S R S S e S
> > >> >> >XIx> > >3 > > 22> >> 2> >
233 333 H5233 DBD> .33 > 33 35> B3> 233> 5 333 3 3535
233 >33 33333 23333 >3 > >3 >33 33> 53333 >35> 5 X33
22> >>> >> 225> > > > 252> 23> 23323 32> > 2225
22> 33 30223 23533 33> > 22> 233 233 22230 > D22
232 333 >3553> 5> > 333> > 32> 3> 33> S>> .> 23> > 335>
2> 32> > >> >3 > >35> >> >>> >> >>> > >
P53 50020323003350322230030353 0330333000003 553520D
EE T R EEE IR P RS a2l SR Eeta RIS SSENERES TS S aAaSERCse2z T
ST rRTE[SSTSTE I OSTB £] = .= M=oz Ssss=an
BES SRS UNS Lo aeEns = L =] =a® Lt srazs bl SdgmwEEaEaaan
BETAZTIETVWRTS 2T BEQ & 23== MYE ZIJFT EZIV=R rTaTTsscsssAsana
STaarEgNSENSC = - = EE =S ¥a e ==z LR R T F E X5 5 ¥ BTF 3
BREEICLCrSSSEBSY == 3 R 2E= =% e magzss=sag SeEgazsSassusr
EFrSSSSEARNTURY ZRE N FIT ANE £XT BISRE NPT CREZsI=IISSTESoE
SR PUAABTIBRER SN L == mmn® LE.Ad e CidazsarIoTMcHa
B P TN E T S T X LI S YRR N ST C R I T AT ST R ECTCLEERI TR RTTETEES &
PPC TECHNICAL NOTES #13
? CONTENTS
John McGechie Today Was Tomorrow Yesterday After All, 2
Nelson Crowle Keycodes Returned by Mainframe "C = KEY KY" 3
Egon Jensen . What's Wrong With the HP-l41c Software?. 4
Rolf Mach IL-Monitor EPROM Controls on the Bit Level. 7
John McGechie Next Year - & the Year After That (Before the HP-75). 9
Tom Cadwallader An Ancient Mystery. . + « + « ¢ o o s & & R
John McGechie General Purpose Non-Normalised Store and Recall b 13
Ulrich Jansen Module Memory Trauma, Useless Bug, EFM Punctuation. . 16
Chris Rath TieiTac Toe Throughithe Tl iDs e S ctois o ot L LU DT
Chris Rath ROM XRUM's and RUM XROM'S v v &« o & & o e el
Ulrich Jansen NOMAS Devices: HP-U41c Keyboard and Add-Cns. ., 21
Stuart Thomson Stirling's Formula Improved & ALl
Paul Lind HP-41c Interface to Any Computer. . . « . + + o + » « 28
Gerard Westen Fast Alpha Data Pack and Unpack 42
Chris Rath A Wave of the Wand Gives a Hand to the Euchre Player 43
Chris Rath An Ensemble of Assembly Hints . « ¢« v « v v o & o o » 45
Paul Lind Suggestions For Writing Machine Code. u7
Bill Reuter Seattle Base Photos S e s S e 51

Richard Collett & Michael Thompson
Hard Melbourne Microprogramming on Softy 2. 53

John MeGechie B2 + XM + Synthetics = SIZE 238 + 319 PRGM Regs . . . 56
Stuart Thomson Truth Table - An RPN Stack of Boolean Variables . , . 58
Irv Weiner Rhode Island Chapter EPROM Function Set 60
Jose Luis Chinchilla EM Makes the NONEXISTENT Real . . « & v v v « o = o » 62
Gerard Westen Walmolen Report: The XF Cubic Rube. i apest e 04
John McGechie Melbourne Chapter Notes . . . + + + &+ + . i e e 03

May, 69; September, 71; Microcode Session Notice, 73; MLDL PC Board

to be available, 74; TN Comple/iments and Copies, 75; TN#12 Mailing, 77;

TN Subscription Rates, 77; TN Having RATHer a Good Index, T8.
Charles Bouldin Report from Seattle Base to Moon Relay. 79
Charles Bouldin Two Microcodings: SAVSTArt and RESSTA*t 81
Sad .ED. at the .END. of His Very Long Tether, Squints Sideways From Page . 83

PPC TECHNICAL NOTES #13

TIC TAC TOEING THROUGH THE TULIPS] Tiny Chris Rath (6287)

Tic Tac Toe seems to be one of those games that PPC owners like
to programme into their machines; if they have the memory. So,
let's talk about same of the major points one encounters during
the writing of such a programme.

One of the first points that appears is, "How to store the
board?" Remember, that it, your method, must be memory efficient
in two ways: 1) Data storage space; 2) Programme memory used to
access a board location.

There are three methods that quickly spring to mind: 1)Devoting
a register to each square; 2) Using flags; 3) Or using a single
register for the entire board, and nine digits right of the decimal.

Devoting a reg./sq. violates our memory efficiency decision, and
is not reallyacmsiderat.imatall. The other two are fine to
use; and also, they do not require synthetics, a big plus (not im-
plying the first uses them). Number 3) is the better of the two
though. It aJ,lows distinction between m'nocwpx.ed‘ '¥=occupied',

upon your

Let us consider the board for a moment. If we number 7
the squares as showen in fig. 1, then they correspond to 4:
the keyboard; making things easy for the user. 1

Also, about the board; as well as nine squares, there fig.1
are nine ways to win. ILet us call these 'win lines'. g-
Cbviously, each time the 4lc is required to make a move, it must
lock at all nine win lines (in the worst case). A question thus
arises: Do we keep track of the win lines in memory, or do we re-
calculate each time? Execution time, and available memory are the
consideration here. If you can spare the memory, then it speeds
emecutimtinegreatlyifammingstamsofﬂ\ewinlimiskept.

The next decision is a fairly major one; how to represent the win
lines in storage, or in the programme after calculation? This
will determine whether to assign a single reg. to each line, or
to use the flag or single reg. for all options.

We can immediately cross the flag option off our list. It only
allows a there/not there, representation; which is insufficient.
The difference between individual or single reister usage is also
great (from a programme execution point of view). The key point
being that while a single reg. for all allows sufficient differen-
tation, it does not allow negative number representation.

Win Line States : Man Combinations : #3 This may seem
trivial, but,

1 Null Status : No men in line : @ what kind of
change are you

2 Possible threat : 1 opponent in line : -1 going to effect
to the win line

3 Possible win : 1 of own in line : 1 when a piece is
played? There
4 Must block : 2 of opponent : =2 are 8 combina-
tions of men,
5 Will win : 2 of own in line : 2 but only six
win line states.
6 No Threat : 2 and 1 conbination : 1 Because it is
: One of each : @ the win line
Fig. 2 state that

ultimately matters, it is probably best if we store that, as
opposed to the actual man combinations.

There are, without a doubt, many ways to store this status. But
let us look at one that is very simple to visualize and use.
Using the single reg./win line; begin with all the registers at

17

PPC TECHNICAL NOTES #13

zero. Now, what happens if we add 1 to the appropriate registers
when the 4lc moves, and subtract 1 when its opponent moves. As
you can see, by column #3 in fig. 2, the states are very well
defined, and lock simple to test. Remember that there is always
more than one register to add to or subt. from; with square 5, as
an example, there are four reg.s to effect changes to. This
method of representation is simple enough that is probably worth
translation to and from this notation if you are using the single
reg. for all method.

The only remaining question concerns strategy. It is important
to note here that sg.5 is used in the most win lines, and that the
next most used sq. is any one of the corners. Since it is
possible to tie, or win, starting from any square, we can conclude
that the first move made in a game is of no concern. The second
move made does, however, have an optimum: If the centre was not
taken by the first move then it should be the second move; if the
centre is already occupied then any one of the corners is the best
move. There are other subtleties, but the interested reader can
play out several games and determine them his-her-self.

* * * KX * * * * & X &

The Tic Tac Toe programme showen here uses a reg./win line, and
a single reg. for all squares, for board storage. Because win
lines are kept current, the board storage only needs to indicate
{un)occupied. I didn't use flags because I have too many other
routines that use them.

To play “TTT, just ¥XEQ"TTT. When you are prampted for a “SEED?",
enter a nuvber between ¢ and 1. The 4lc will then respond with
either its first move, or the message, "YOU GO FIRST", depending
upon the fisrt RN chosen. THE PPC ROM is required, or check back
issues of the Journel for a listing of “RN. To enter your move,
or interpret the 4lc's,use the digits one to nine of the key-
board, as I suggested in the discussion.

28,
Chris Rath (6287)
1281 Agincourt Rd., Ottawa, Ontario, Canada, K2C 273

; 26 X>¥7? 39 XEQ 22
FPPC ROM required! 21 GTO 12 46 2
aleLBL "R” 22+LBL 11 41 MOD
92 RCL 1@ 23 E1 42 N=87
83 CLRG 24 XROM "RN| 43 SF @1
@4 STO 18 - 44 S
a5 CLST 25 * 4S5 XE@ 23
a6 GTO 10 246 INT 46 Kza7?
@7+LBL “TTT| 27 X=07? 47 GTO 14
- 28 GTO 11 :g L5,B
G 29 E *LEBL 13
32 gth 2@ XEGQ IND | S& E
14 CLA 4 S1 XE& IND
11 “SEED?" 31 XE® 22 |¥
12 PROMPT 32 GTO 15 52 XEG@ 22
1Z STO 1@ ZZeLEL 12 53 GTO 15
14eLEBL 18 Z4 ~YOU GO | S4eLEL 14
15 CF 10 FIRST" 55 E1
16 CF @1 35 PROMPT S6& KROM “RH
17 E:." il g? r‘ﬁe ..5?)
--13 Bne 38 HER IND | S8 INT
19 .5 Y Se F

PPC TECHNICAL NOTES N13 19

6 R=y? 126eLEL 26 |178<LBL @1(|248 X=07 382 RTHNH

61 GTO 13 121 CLX 179 ST+ ©@1[|241 RTH 383 S

62 CLX 122 RCL IND|18® ST+ 84(242 7 384 XEQ@ 23
&3 2 2 181 ST+ @8|243 XEQ 233|385 X=07
64 X=Y? 123 X=Y? 182 RTH 244 X=87 386 RTN

65 GTO 1= |124 GTO 21 |183eLBL 082[245 RTHN 387 8

66 CLXY 125 DSE 2Z 184 ST+ ©4|246¢LBL 33388 XEO 23
&7 7 126 GTO 26 |185 ST+ 87247 3 309 X=87
68 X=¥? 127 RTH 186 RTH 248 XE@ 23|318 RTH

69 GTO 13 |128eLBL 21 |187+LBL 63 249 X=87 Z11eLBL 32
78 CLX 129 CL¥ 188 ST+ 022|256 RTH 212 E

71 9 128 30 189 ST+ B32|251 6 3213 XKEQ 23
72 %=¥? 1321 ST+ 2 198 ST+ B4|252 XEQ@ 23314 X=87?
73 GTO 13 |132 XE@ IND/191 RTHN 253 X=87 315 RTH

74 GTO 14 |2 192¢LBL @4|254 RTH 316 4
7SeLBL 15 [133 CLX 192 ST+ 085|255 2 317 XE@ 23
76 STOP 134 E 194 ST+ @8|256 XE@ 23|318 X=87
77 E 135 XEGR IND{195 RTH 257 X=87? 3219 RTN

78 CHS Y 196¢LBL 885|258 RTHN 320 7

79 %EG IMD|136 XEG 22 [197 ST+ 01]259¢LBL 34321 XEQ 23
¥ 137 8 198 ST+ 822|260 E 322 X=07?
2@ XEQ 2z |138 3 199 ST+ @5|261 XE@ 233|323 RTH

g1 8 129 ENTERT |288 ST+ 087|262 X=67? 324 “CAT'S G
g2 3 148 XEQ 24 |281 RTHN 263 RTHNH oT IT"

23 ENMTERT |141 RT 202+ BL 906|264 2 325 PROMPT
54 XEQ 24 |142 SF @@ [203 ST+ @3|265 XEQ 231326 GTO “R~
85 8 143 RTH 284 ST+ 85|266 X=872 I27eLBL 25
86 2 144¢LEBL 22 |285 RTHN 267 RTH 328 LASTX
27 ENTERT [145 X<>Y 286+LBL 67|268 2 329 -3

28 KEQ 20 |146 CHS 287 ST+ 082|269 XEG 23|338 “I WIN !
g9 FS7?C @@/ 147 E1 288 ST+ 0&[278 X=87? 1=

a@ GTO 15 |148 X{OY 289 ST+ 988|271 RTHN 331 X=Y?
a1 £ 149 Y1TX 216 RTHN 272¢LBL 355|332 ~YDOU WON
92 -2 158 ST+ 8@ |[211eLBL 688|273 4 .

92 ENTERT |151 LASTX [212 ST+ 06274 XEQ 232|333 PROMPT
94 RKEGQ 20 |152 ABS 213 ST+ 087|275 X=e7 334 GTO "R~
as Fs7?C 2@l 153 RTH 214 RTH 276 RTH 335 END

96 GTO 15 |154«LBL 23 |215SeLBL 09277 S

97 S 155 ENTER®T |216 ST+ 811|278 XEG 2Z|LBL'R

ag REG 23 |156 ENTERT |217 ST+ 83(279 X=872 LBEYTTY

99 X=x07? 157 E 218 ST+ 866|288 RTHN END

18@ GTO 16 |158 - 219 RTHN 281 6 598 BYTES
181 S 159 E1 a29eLBL 311|282 XEQ@ 23|PPC ROM rewired!
182 E 168 X<>Y 221 . E 282 X=07

183 XEO IHD/161 ¥TX 222 XEQ 232|284 RTH

Y 162 RCL @8 |223 X=87? |285+LBL 36

184 XEG 22 [163 * 224 RTH 286 7

185 GTO 15 |164 FRC 225 S 287 XEQ 23

1e6+LBL 16 [165 E1 226 XKEQ 23288 X=87?

167 S 166 * 227 %=87? 289 RTH

188 E 167 INT 228 RTH 298 8

1ia9 ENTERT [168 RTHN 229 9 291 XE@ 23

119 REDQ 20 |169+LBL 24 |238 XEQ@ 23[292 X=07

111 Fs?Cc aa|178 CLX 231 X%=87? 293 RTH

112 GTO 1S |171 RCL INIf 232 RTHN 294 9

113 2 z 233eLLBL 332|295 XE@ 23

114 A 172 ABS 234 3 296 X=@7

11S EWTERT [173 R=Y? 235 REQ 23|297 RTH

116 ®FQ 28 [174 GTO 25 | 236 X=07 298<LEL 37

117 FS?C @9 :?5 DSE 2 237 RTH 299 2

118 GTO 1S |176 GTO 24 1238 S 380 XEQ 23 . .
119 RTH 177 RTN 239 ¥EQ 23[301 X=07 e P

20

PPC TECHNICAL NOTES #13

ROM XRUMS AND RUM XROMS Chris Rath (6287)
A question that you, as a 4lc user, have probably thought about
is, "Why don't XROM's prompt for their data, like STO, etc." This
after looking at EPROM Box functions such as NSTO, NRCL and others.
The truth is that some XROM functions do prompt. The Printer
function PRP is a good example of this. But, PRP and its other
prompting friends are exceptions to the rule; so let's consider

them first.

As anyone who has tried to put PRP in a programme can tell you,
once you get it there, it looses its prompting ability and doesn't
work quite the way you would like it to. This is the biggest
reason that XROM functions do not prompt: The 4lc assumes that
all 'programmable' XROM functions are non-prompting. This is a
reasonable enough answer to our first question, but as our nature
would have it, another question arises: "Why does the 4lc assume
this?"

The explanation for this came when Paul Lind wrote a routine
called PCAT. It is a port addressable CAT function, which really
is the way Mother HP should have written the function in the first
place, but that is a coment for the wish list. In any case, Paul
made his function nonprogrammable, and prompting, like the origon-
al. Without a printer one would nover notice its, PCAT's, quirk,
instead of taking the prompt responce and printing that, it takes
the XROM mumber and interprets that as the data the user entered.

So, our question is answered: The 4lc uses the same register
to save XROM numbers as it does to save numerical responces to

. We know that Alpha responces to prompts are saved
alright because the responce to PRP is correct, when printed.

There is also a second and more cbvious answer to the second
question. If programmable XROM functions were allowed to prompt
then the postfix would be stored in programme memory after them.
If, then, the postfix didn't happen to correspond to a stand-
alone function, what would happen to programme integrity when
the external ROM was unplugged, and the programme viewed? The

would, cbviously, not appear correctly to us. But,
is this really a reason to give in responce to the question.

If Mother HP had really wanted she could have allowed program-
mable XROM's, and the Assembly Language programmer still can.

If the postfix were to be stored in programme memory as an

XROM number, then it would not cause a loss of programme integrity.
All that is needed is a routine to interpret the XROM postfix as
data, and a storage routine to place it in memory. This is not

as hard as it sounds. Since a programmable XROM function will
allow itself to be stored in programme memory, we have half the
problem solved for us. RAll that remains is how to effect

storage of the postfix. What is required here is a short, non-
programmable function that prompts for the postfix. The responce
to this prompt is then translated into the appropriate XROM and
then stored in programme memory, just following the previously
entered programmable XROM. The @, XX XROM's might be appropriate
for use here.

The function that we want to be programmable and prompting, will
do its own prampting when executed frmthekeyboa.rd, in run mode.
So, if the routine tests to see if a programme is running, and
then gets its data from Programme memory following it automatic-
ally, then our 'problem' is solved; if a programme is not running
then it knows that its data has already been gotten for it by the
mainframe.

So, now we know why XROM's don't allow postfixes, and we also
know how to solve the problem.

PPC TECHNICAL NOTES #13

THE MILLER'S HIGH SPEED ALPHA PACKER Gerard Westen (4780)

Not content with shortening routines (anyone would think he hated
program instructions, the way he gets rid of them), Gerard now has
reduced the execution time of alpha packers to around the three second
mark. The listing of his latest remarkable routine appears on the
opposite page., Previous packers were in the Journal last year, with the
inventor, Jake Schwartz' original, taking 28 seconds odd (PPCJV8N3P15),
in TN with around eight seconds, due to Richard Collett and .ED.
(TN9p11), improved by Gerard again in TN (#11pp.67-70), and then Gerard's
further reduction of Jake's original methods. Now this, Of course the
best is Jim de Arras' microcode version, which takes no time at all, . .

For thoze who have not =een these routines before, know this: an
alpha packer takes up to ten alpha characters from the alpha registers,
allocates five bits to each, and codes them into an alpha string in X for
storage in a single register. The unpacker does the opposite, taking the
contents of X, placing the resulting string of ten or less characters
into alpha. But whether this is your desire or not, study Gerard's
programming to learn how a master does it. Your Alpha Packing - .ED.

R ROE R E R R EREERTEREERR
Labradacadian Euchre Player Waves Magic Wand Chris Rath (6287)

Chris is a man of many parts (now THAT is a Sweeney Todd remark
if there ever was one...), and card sharping (EUCHRE card sharping
is a contradiction in terms??) seems to be one of them. (His feet,
actually.) Here is his contribution, not sc much to playing games
fsinful) with the HP-d4lc, as to being assisted in the playing of
games BY the HP-dlc, which as everybody knows, is not at all sin-
ful. More of Chris' work appears below, in this issue... .ED,

* ok & & & b ok ok ok ok ko Rk ko R

Dear John: 13/7/82

I promised you the tic tac toe article over a year ago, and
here it finally is. The XROM article should be of interest to
some, if only from an idea point of view.

I have been meaning to drop you a line about the Bug Survey
for several months. I have had about 30 responses; not enough
to warrant any further follow up article, and I have returned the
international postal coupons to those who sent them,and SAE.

I am sorry that I have caused a wastage of space in the TN's,
it was not my intention to do so. I have access to an electric
typewriter for the next few weeks, and I will try to get a few
more submissions typed and sent off to you. If they are not
suitable for the TN's mavbe you could send them off to Richard
with your normal batch of TN material.

If there is anyone in your chapter who has built an MLDL, you
might let them know that I have written an Assembler. It takes
ASCII from the keyboard and stores the opcode in memory. It
calculates jump offsets for relative jumps and allows entry of
244 Hex Codes as well. It fits on 13 cards and requires
FEG to ROM, or a substitute for entry from the cards. Also
one memory module, single density. The module is only used
during entry of the programme to the ROME. Any interested in
it can obtain a copy by sending 13 cards for me to record it on.

Happy Proqrfﬂm:ing.
At]
s fabe

43

44

PPC TECHNICAL NOTES #13

WAND READS, BUT DOES NOT CHEAT AT EUCHRE Chris Rath (6287)

Presented here is another WAND application., There is a game on the
market that will play Bridge. The game uses bar codes on the cards to
effect entry of the cards, The first of the routines here allows entry of
a Euchre hand, It stores the hand in four registers, one for each suite,
The bridge game inspired this,

By using the WNDSCN function, and the stick-on labels 28, 25 to 29,
38, 35 to 39, 4P, 45 to U9 and 5@, 55 to 59, we can effect an easy entry
of the cards into memory. The ten's digit indicates which suite, and
which register, and the one's digit indicates the specific card:

9H-25 18H-26 JH-27 QH-28 KH-29 AH-2€ ete,

Using the indirect register exchange, and the exchange 'd', we can
put the appropriate register (suite) into the flag register, and then set
the flag corresponding to the scanned card., Of course a digit @ must
indicate flag 1@, or an indication would show on the display. Two extra
flags must be used to indicate the Bauers, and we may as well arbitrarily
pick 12 and 13.

The labels should be trimmed before they are stuck on the cards to
remove the printed 'identifier' that tells what number the card (barcode)
is. The label can be more than adequately protected by placing Scotch
Brand Magic Tape over the label. The tape has a matte finish, and does
not hinder SCAN'ing of the code,

Because there is no checksum in this type of barcode, it is
imperative that the 41c check to see that it has read the card correctly.
This is the function of the LBL "WNDSCN" routine. Only the X and L
registers are used to effect the check, the stack is otherwise just as
the scan left it. The routine is entered at LBL "WNDSCN", and is really a
multipurpose routine, and should have a global label on it.

2E@, Chris Rath (6287)
1281 Agincourt Road, Ottawa, Ontario, Canada, K2C 2J3

ai1+LBL “EUC 19 % &

HRE EHNTRY"™ 28 ENTERT gé ;gh as
82 XEQ 19 21 ¥<> IND Aa3«LBL “WHD
632 1.060S a1 SON™
@4 ENTERT 22 X<> d @4 AVIEM
85 ENTERT 23 SF IND ¥ A5 WNDSCH
ac+LEL B2 24 X<> d a6 CL¥
a?v "SCAN CH 25 X<{> IND 87 RCL @1

RD #- a1 a3 sSTO L
88 HRCL Y 26 X<> T 69 RDHN
a9 RDN 27 XY 18 WHIDSCH
18 XE@ “HWHND 28 ISG Y 11 CL¥

SCH* 29 GTO a2z 12 RCL L
11 CL¥ 38 RTHN 12 ST- @1
12 E1 31eLBL 18 14 <> a1
13 sT- ®B1 32 FIX © 1S5 ®=*@7?
14 RCL @1 23 ZREG @@ 16 GTO As
15 FRC 34 CLE 17 END
16 E1 325 CLST
17 * 36 END HRE TRY
e EuchRe En

91 BYTES
LEL " MNDSCH
END

35 BYTES

PPC TECHNICAL NOTES #13 45

ASSEMBLY LANGUAGE PROGRAMMING HINTS Chris Rath (6287)

Ah well, everybody knows what Chris really means by the
above title. It's MALMAC, or its MICROCODE, or its MACHINE LANGUAGE,
or its MACHINE CODE. Whatever- it is what the HP-{lc microprocessor
gobbles up, and it is also what there hasn't been enough of around
the shop. It will be seen from the following that Chris is ahead of
all bar a few in the area. The only sad thing about all of this, is
that it all could have happened a year earlier, had HP allowed a
peek, if not a poke inside some of those Books and Manuals. It comes
as a real shock to realise that the codes/mnemonics for well known
microprocessors were way out in the public domain almost before the
positive holes started to flow through the chips....

One must remember that many Class 2 instructions, refeming to
A=A+B thru Ce-C-1, will affect the state of the 'carry' bit. So,
one must be extra careful if the XQ/GO & relative jumps or
conditional returns are placed after one of these Class 2
instructions. For example; in the Llc mainframe this feature is
used to test for the ON/OFF key. One of the first things that
occurs when the 41 detects a keystroke is the addition of 8 to
the 'row' nybble of the keycode. All the keys have row numbers
between Pand 8; but ON is the only key in row 8. Therefore,
when 8 is added to a row value of 8,then a carry results and
the machine knows to branch to the OFF routine. Don't say to
yourself, as you place a "?c XQ " after "C=C+l M",that you
don't have to worry because there will never be a carry; for
if at some time there is garbage in the register, the results
could be more than you bargained for. I had a routine over-
write 4K of my MLDL; causing 2K of code to be lost!

Don't get caught up using only the "LDI S&X" or only the
"LD8R- d". They both have their advantages, and it only takes
a minute to write out both and count the bytes. "LD3R" requires
that the R value be set, an extra byte; but, it decrements the
pointer after loading, and the digit is loaded exactly where you
want it. "LDI" on the other hand, does not require a pointer
value, and can load up to three digits at a time (in some cases);
but it often requires that an RCR be used to shift the data
string into position before the load, and sometimes again after
too. It must also be remembered that LDI clears bits 243 of digit
2: even though no data is there to be loaded. (This implies that
it may be possible to load 12 bits with a LDI; if ROME were 12
bits ld.de.go3 digiy loads may require a bit shift after loading.

Don't worry too much about destroying the return stack; except
your own pending returns (I am refering to the cpu stack). If
you do it inadvertantly the machine will just go into Standby
mode; and if you do it intentionally you can always use a COTO
AIR to end your routine and send execution back to the mainframe.

Because no bit level shifts are nrovided, the easiest way to
perform bit shifts is to remember that RCR one bit,is just a
C=C+C. The appropriate combination of C=C+C's and RCR's will
£ill one's needs. Remember that you are shifting zeros in from
the right when you perform a C=C4C; regardless of the field!
This hint seems trivial, but it toock me two days to figure out—
I hadn't been thinking.

28§,
Chris Rath (6287)
1281 Agincourt Rd., Ottawa, Ont., Canada, K20 2J3

PPC TECHNICAL NOTES #13

TWO_TEN BITS OF WORDS TQ THE WISE FROM YR VERY OWN CHRIS RATH (6287)

When you are using ?c XQ and ?nc XQ be careful that you do not,
unintentionally, send execution to an address containing Hex ggg.
If the first word an execute encounters is ### then the cpu
treats it as a RTN; and so returns immediately.

This is the method that the Llc firmware uses to check for
Printer existence,and the Diagnostic module. The Llc just makes
a call to the printer/diagnostic routine; and if the module/plug
is in place then execution of the routine is effected. Otherwise
there is an immediate return, and the Llc continues its normal

execution path. uw «aﬂ (28D

HANDY GUIDE TO0 RELOCATA-—
BLE GO~-XQ's.

SAME 1K BLAOCK:
GO~--—GF DA-——369-03C
Hil-——@F DE-—-379-G63C
1=t 1K BLOCK :
GO-—-2Z2D8---341-GB8C
AA———-23DZ2---349-SC
Znd 1K BLOCK :
GO-=--2ZD9-—-—-36£5-A82C
KP—-——-2ZDB———-36D-B3C
3rd 1K BLLC ™K :
GO-——-23E2---3289-02C
KAQ———23E4-—--391-608C
4th 1K BLOCK :
GO-——-2ZEB——-3RAD-82C
XQ———2ZED-—--ZBS5-08C

JEREMY SMITH
19451 Mesa Drive
Villa Park
California 92667
Usa
29 October, 1982

Dear Chapter Co=ordinator

Please find enclosed a complimentary copy of the new
‘HP=41 SYNTHETIC Quick Reference Guide’ and cover let=
ter.I would be most grateful 4i1f you would present this
booklet at your next meeting and allow all present a
chance to see it. The October issue of PPC CJ VON7
should have this mentioned in the trading post column.
The back cover of the booklet shows the contents for a

quick review.

Each order consists of the booklet and the cover letter.
Each order is available for $5.00 and either S.A.S.E. or
$1.00 postage. PPC members: $4.00 plus postage. All or=
ders and enquiries to Jeremy Smith #6676, at the above

address.

Qutside
Ush add

42 for rvﬂ'
B bawehling

PPC TECHNICAL NOTES

PFCTN COMES OF AGE

Chris Rath has been busy for us, not only in playing
cards on cur behalf, nor yet on writing and tipping on THAT many-
named stuff, but he has performed the ultimate thankless task: we
have from him an index for TN1 to 12. As it is already in small
print format, we will run off a separate small booklet, and enclose
it with TN#14. (Yes folks! There is to be such a beast.) Here is Chris
on the subject. Our thanks to him. Preparing such an index is a long
task, but important in our area. Even though I sometimes feel I know
most of most issues of TN by heart, at least for several weeks after
final copy is ready, I often have to hunt through the contents on
the covers for a while to find what I need. For others it is harder.

24/9/82
Dear Johni

I had some computer time left after this months
Assignments were handed in. So, I used the Editor
to do this listing.

There are several entries missing, as follows:

1) The Editorials entries for TN#l and #2.

2) From TN#9 on entries of the type:(and I give as
example) the block of contents listings that
runs from "Visitors to Melbourne......." to "bar
code, 51." in TN#9. These 'blocks' of entries
take a long time to enter. If I can manage to
get this saved on tape then I will update it
from time to time, and send you listings. If
not, then this will be the only listing. This
file takes ALL of my temporary disk storage
allotment, and I will have to delete it, or save
it on tape, before I run my next assignment. I
don't know, yet, whether or not I have tape
privileges; I:sieck Monday.

If I get a chance I will add the missing entries and
send a listing of the update. 1In any case, I hope that
I have saved someone the work of doing this.

While I was typing this in I noticed that Gerard
Westen had already written on RAM RTN's (n8pll). It
makes my submission to Richard (I sent you a copy) on
the subject rather redundant, But, I can't find a
CJ item about the subiect. (Is it there??).

Enjoying Sghool,

S [
Koo b

(Lént

